Improved approximations for max set splitting and max NAE SAT

نویسندگان

  • Jiawei Zhang
  • Yinyu Ye
  • Qiaoming Han
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved Approximation Algorithms for MAX NAE-SAT and MAX SAT

MAX SAT and MAX NAE-SAT are central problems in theoretical computer science. We present an approximation algorithm for MAX NAE-SAT with a conjectured performance guarantee of 0.8279. This improves a previously conjectured performance guarantee of 0.7977 of Zwick [Zwi99]. Using a variant of our MAX NAE-SAT approximation algorithm, combined with other techniques used in [Asa03], we obtain an app...

متن کامل

Improved Bounds for Exact Counting of Satisfiability Solutions

An algorithm is presented for exactly solving (in fact, counting) the number of maximum weight satisfying assignments of a 2-SAT formula. The worst case running time of O(1.2461) for formulas with n variables improves on the previous bound of O(1.2561) by Dahllöf, Jonsson, and Wahlström. The weighted 2-SAT counting algorithm can be applied to obtain faster algorithms for combinatorial counting ...

متن کامل

Fixed Parameter Set Splitting, Linear Kernel and Improved Running Time

We study the problem k-Set Splitting in fixed parameter complexity. We show that the problem can be solved in time O∗(2.6494k), improving on the best currently known running time of O∗(8k). This is done by showing that a non-trivial instance must have a small minimal Set Cover, and using this to reduce the problem to a series of small instances of Max Sat. We also give a linear kernel containin...

متن کامل

F IXED P ARAMETER S ET S PLITTING Fixed Parameter Set Splitting , Linear Kernel and Improved Running Time 1

We study the problem k-SET SPLITTING in fixed parameter complexity. We show that the problem can be solved in time O∗(2.6494k), improving on the best currently known running time of O∗(8k). This is done by showing that a non-trivial instance must have a small minimal SET COVER, and using this to reduce the problem to a series of small instances of MAX SAT. We also give a linear kernel containin...

متن کامل

Revision 01 of Better Approximation Algorithms and Tighter Analysis for Set Splitting and Not-all-equal Sat

We construct new approximation algorithms for Max Set Splitting and Max Not-All-Equal Sat, which when combined with existing algorithms give the best approximation results so far for these problems. Furthermore, when analyzing our combination of approximation algorithms, we introduce a novel technique, which improves the analysis of the performance ratio of such algorithms. In contrast with pre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Applied Mathematics

دوره 142  شماره 

صفحات  -

تاریخ انتشار 2004